KINETICS

1. For the equation

 \[2 \text{H}_2(g) + \text{O}_2(g) \rightarrow 2 \text{H}_2\text{O}(g) \]

 How is the rate of formation of H\textsubscript{2}O mathematically related to the rate of disappearance of O\textsubscript{2}?

2. Determine the relative reaction rates of the four substances involved in the following chemical reaction. Place the appropriate numbers in the boxes.

 \[
 2 \text{C}_2\text{H}_2(g) + 5 \text{O}_2(g) \rightarrow 4 \text{CO}_2(g) + 2 \text{H}_2\text{O}(l)
 \]

 \[
 \frac{1}{\text{_______}} \left(\frac{-\Delta[\text{C}_2\text{H}_2]}{\Delta t} \right) = \frac{1}{\text{_______}} \left(\frac{-\Delta[\text{O}_2]}{\Delta t} \right) = \frac{1}{\text{_______}} \left(\frac{-\Delta[\text{CO}_2]}{\Delta t} \right) = \frac{1}{\text{_______}} \left(\frac{\Delta[\text{H}_2\text{O}]}{\Delta t} \right)
 \]

3. For the following reaction, the rate of disappearance of A is equal to -0.084 M/s at the start of the reaction. What are the rates of change for B, C, and D at this time?

 \[
 2\text{A} + \text{B} \rightarrow 3\text{C} + \text{D}
 \]

 Rate of Change of B = _________ M/s

 Rate of Change of C = _________ M/s

 Rate of Change of D = _________ M/s

4. Based on the graph below, determine the instantaneous rate of change of [x] at 10 seconds.

 \[
 \text{Instantaneous Rate of Change of X} = \text{_______}
 \]
5. Based on the data below, what are the average rates of change of \([O_2]\) and \([NO_2]\) over the interval 0 to 660 seconds?

<table>
<thead>
<tr>
<th>Time (s)</th>
<th>([NO]) M</th>
<th>([O_2]) M</th>
<th>([NO_2]) M</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.1000</td>
<td>0.01000</td>
<td>0.0000</td>
</tr>
<tr>
<td>285</td>
<td>0.0090</td>
<td>0.0095</td>
<td>0.0010</td>
</tr>
<tr>
<td>660</td>
<td>0.0080</td>
<td>0.0090</td>
<td>0.0020</td>
</tr>
<tr>
<td>1175</td>
<td>0.00070</td>
<td>0.0085</td>
<td>0.0030</td>
</tr>
</tbody>
</table>

Average Rate of Change of \(O_2\) = ______________

Average Rate of Change of \(NO_2\) = ______________

6. If the rate constant, \(k=350\) s\(^{-1}\) for a certain reaction, what is the overall order for that reaction? ______________

8. The following reaction occurs in the gaseous state.

\[
2 \text{NO}(g) + 2 \text{H}_2(g) \rightarrow \text{N}_2(g) + 2\text{H}_2\text{O}(g)
\]

The following rate data were obtained.

<table>
<thead>
<tr>
<th>Trial</th>
<th>Initial ([NO])</th>
<th>Initial ([H_2])</th>
<th>Initial rate(M/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.20 M</td>
<td>0.20 M</td>
<td>0.060</td>
</tr>
<tr>
<td>2</td>
<td>0.20 M</td>
<td>0.30 M</td>
<td>0.090</td>
</tr>
<tr>
<td>3</td>
<td>0.40 M</td>
<td>0.20 M</td>
<td>0.240</td>
</tr>
</tbody>
</table>

(a) Determine the rate law for this reaction (including all exponents & rate constant).

Rate Law: ____________________________

(b) What is the order or the reaction with respect to:

\(\text{NO}\)? _____ \(\text{H}_2\)? _____ Overall? _____

(c) What would the initial rate of the reaction be if the initial concentrations were:

\([\text{NO}] = 0.10\text{M} \quad [\text{H}_2] = 0.30\text{ M}\)
9. Determine the rate constant of the following reaction at 298K, where
A (the Arrhenius pre-exponent factor) = 1.2 \times 10^{12}, and Ea = 11.6 \text{kJ/mol}

\[\text{NO}(g) + \text{O}_3(g) \rightarrow \text{NO}_2(g) + \text{O}_2(g) \]

\[k = A e^{-\frac{E_a}{RT}} \]

\[k = (1.2 \times 10^{12}) e^{-\frac{(11600 \text{J})}{(8.314 \text{J/K mol})(298 \text{K})}} = 1.1 \times 10^{10} \]

10. Complete the data table below for the reaction \(A + B \rightarrow C \). Then calculate the slope of the plot of \(\ln k \) vs \(1/T \) (Arrhenius Plot) and the activation energy of the reaction. Be sure to use unrounded values in your calculations.

<table>
<thead>
<tr>
<th>K (M(^{-1})s(^{-1}))</th>
<th>T (K)</th>
<th>Ln k</th>
<th>1/T (K(^{-1}))</th>
<th>Slope =</th>
</tr>
</thead>
<tbody>
<tr>
<td>6255</td>
<td>288</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8831</td>
<td>323</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ea =

11. From the following graph, determine the activation energy and the enthalpy of the reaction.

\[\text{Ea} = \text{_______} \]

\[\Delta H = \text{_______} \]

12. According to the graph below, about what percentage of the collisions will have sufficient kinetic energy to form products?

\[\% \]

13. In order for a reaction to occur reactant molecules must:
 A) ______________________________
 B) ______________________________
 C) ______________________________
14. The mechanism for the reaction $3 \text{ClO}^- \rightarrow \text{ClO}_3^- + 2 \text{Cl}^-$ is

\[
\begin{align*}
\text{ClO}^- + \text{ClO}^- & \rightarrow \text{ClO}_2^- + \text{Cl}^- \quad \text{(slow)} \\
\text{ClO}^- + \text{ClO}_2^- & \rightarrow \text{ClO}_3^- + \text{Cl}^- \quad \text{(fast)}
\end{align*}
\]

Derive the rate law for this reaction:

15. Identify the catalyst(s) and/or reaction intermediate(s) in the following reaction mechanism.

<table>
<thead>
<tr>
<th>Step 1:</th>
<th>O_3(g) + NO(g) → O_2(g) + NO_2(g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2:</td>
<td>NO_2(g) → NO(g) + O(g)</td>
</tr>
<tr>
<td>Step 3:</td>
<td>O(g) + O_3(g) → 2 O_2(g)</td>
</tr>
</tbody>
</table>

catalyst(s): ___
reaction intermediate(s): __

16. At a certain temperature, the reaction $2\text{B} \rightarrow \text{C} + \text{D}$ obeys the rate law:

\[
\text{rate} = 1.14 \times 10^{-3} \text{M}^{-1} \text{s}^{-1} [\text{B}]^2
\]

If 5.00 mol of B is initially present in a 1.00 L container at that temperature, how much B is left after 117 seconds?

17. Write a rate equation for the following elementary step:

\[
\text{BeO}_3^- + 2 \text{H}^+ \rightarrow \text{H}_2\text{BrO}_3^+
\]

18. For a given reaction, the concentration of reactant “A” was doubled and the rate of reaction remained the same. We can conclude that the reaction is what order with respect to “A”?

THERMODYNAMICS

1. Predict the sign for the following reaction and then calculate the value of ΔS° using the information below and compare to your prediction for ΔS°.

\[\text{O}_2(\text{g}) + 2 \text{H}_2(\text{g}) \rightarrow 2 \text{H}_2\text{O}(\text{g}) \]

Predicted sign:

<table>
<thead>
<tr>
<th>compound</th>
<th>S° J/mol K</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{O}_2(\text{g})$</td>
<td>205.0</td>
</tr>
<tr>
<td>$\text{H}_2(\text{g})$</td>
<td>130.6</td>
</tr>
<tr>
<td>$\text{H}_2\text{O}(\text{g})$</td>
<td>188.7</td>
</tr>
</tbody>
</table>

2. Predict the value of ΔG under the following conditions:

 A) ΔH negative and ΔS positive
 - $\square \Delta G < 0$
 - $\square \Delta G > 0$
 - \square Cannot predict the sign of ΔG

 B) ΔH positive and ΔS positive
 - $\square \Delta G < 0$
 - $\square \Delta G > 0$
 - \square Cannot predict the sign of ΔG

 C) ΔH positive and ΔS negative
 - $\square \Delta G < 0$
 - $\square \Delta G > 0$
 - \square Cannot predict the sign of ΔG

 D) ΔH negative and ΔS negative
 - $\square \Delta G < 0$
 - $\square \Delta G > 0$
 - \square Cannot predict the sign of ΔG

3. Determine the value of ΔG in kJ at 25°C for the following reaction given that $\Delta S^\circ=326.4$ J/K and $\Delta H^\circ=571.6$ kJ.

\[2 \text{H}_2\text{O}(\text{l}) \rightarrow 2 \text{H}_2(\text{g}) + \text{O}_2(\text{g}) \]

4. Calculate the change in entropy for the following reaction. (Hint use your appendix data / green sheet.)

\[\text{Ca}^{2+}(\text{aq}) + 2 \text{OH}^- (\text{aq}) \rightarrow \text{Ca(OH)}_2(\text{s}) \]
5. Will the decomposition of potassium chlorate be spontaneous at low temperatures, high temperatures, or all temperatures? Use values from your appendix/handout.

6. True or False

______ A) Gases have less entropy than liquids.
______ B) When solids dissolve they tend to increase in entropy.
______ C) The greater the moles of solid, the greater the entropy.
______ D) CH₄(g) has greater entropy than CH₃-CH₂-CH₂-CH₃(g).
______ E) An endergonic reaction is always non-spontaneous.